Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 853, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575377

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). RESULTS: We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. CONCLUSIONS: These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors.


Assuntos
Lipopolissacarídeos , RNA Longo não Codificante , Humanos , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Neuroinflamatórias , Proteínas Nucleares/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Inflamação/genética , Proteínas de Ciclo Celular/genética
2.
Sci Rep ; 12(1): 7779, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546353

RESUMO

The epigenetic reader, bromodomain-containing 4 (BRD4), is overexpressed in hepatocellular carcinoma (HCC), and BRD4 inhibition is considered as a new therapeutic approach. The BRD inhibitor JQ1 is known to inhibit the enrichment of BRD4 at enhancer sites. Gene network analyses have implicated long non-coding RNAs (lncRNAs) in the effects of JQ1, but the precise molecular events remain unexplored. Here, we report that in HepG2 cells, JQ1 significantly reduced various proliferation-related lncRNAs, but up-regulated the known liver tumor marker, MALAT1. Using ChIP-sequencing data, ChIP-qPCR, luciferase reporter assays, and chromatin conformation capture (3C), we characterized the MALAT1 gene locus. We found that JQ1 elicited a rearrangement of its chromatin looping conformation, which involved the putative enhancers E1, E2, E3, the gene body, and the promoter. We further found that the forkhead box protein A2 (FOXA2) binds to E2 and the promoter; suppression of FOXA2 expression resulted in MALAT1 up-regulation and increased cell proliferation. These results suggest that the inhibition of MALAT1 may improve the effect of BET inhibitors as an anti-cancer therapy and that FOXA2 would be a suitable target for that approach.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Azepinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
3.
PLoS One ; 17(4): e0266966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486664

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poor prognosis. Emerging evidence suggests that epigenetic alterations play a crucial role in HCC, suggesting epigenetic inhibition as a promising therapeutic approach. Indeed, the bromodomain and extra-terminal (BET) inhibitors inhibit the proliferation and invasion of various cancers but still lack a strong mechanistic rationale. Here, we identified the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in human HCC cell line HepG2 treated with the BET inhibitors, JQ1, OTX015, or ABBV-075. We analyzed the correlation between DEmRNAs and DElncRNAs in common for the three inhibitors based on their expression profiles and performed functional annotation pathway enrichment analysis. Most of these shared DEmRNAs and DElncRNAs, including some novel transcripts, were downregulated, indicating decreased proliferation/adhesion and increased apoptosis/inflammation. Our study suggests that BET proteins play a crucial role in regulating cancer progression-related genes and provide a valuable resource for novel putative biomarkers and therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética
4.
Sci Rep ; 12(1): 855, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039581

RESUMO

The proto-oncogene MYC is important for development and cell growth, however, its abnormal regulation causes cancer. Recent studies identified distinct enhancers of MYC in various cancers, but any MYC enhancer(s) in hepatocellular carcinoma (HCC) remain(s) elusive. By analyzing H3K27ac enrichment and enhancer RNA (eRNA) expression in cultured HCC cells, we identified six putative MYC enhancer regions. Amongst these, two highly active enhancers, located ~ 800 kb downstream of the MYC gene, were identified by qRT-PCR and reporter assays. We functionally confirmed these enhancers by demonstrating a significantly reduced MYC expression and cell proliferation upon CRISPR/Cas9-based deletion and/or antisense oligonucleotide (ASO)-mediated inhibition. In conclusion, we identified potential MYC enhancers of HCC and propose that the associated eRNAs may be suitable targets for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/fisiologia , Genes myc/efeitos dos fármacos , Genes myc/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA não Traduzido , Linhagem Celular Tumoral , Humanos
5.
Sci Rep ; 11(1): 11799, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083693

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and poorly responsive cancers worldwide. Bromodomain and extraterminal (BET) inhibitors, such as JQ1 and OTX-015, inhibit BET protein binding to acetylated residues in histones. However, the physiological mechanisms and regulatory processes of BET inhibition in HCC remain unclear. To explore BET inhibitors' potential role in the molecular mechanisms underlying their anticancer effects in HCC, we analyzed BET inhibitor-treated HCC cells' gene expression profiles with RNA-seq and bioinformatics analysis. BET inhibitor treatment significantly downregulated genes related to bromodomain-containing proteins 4 (BRD4), such as ACSL5, SLC38A5, and ICAM2. Importantly, some cell migration-related genes, including AOC3, CCR6, SSTR5, and SCL7A11, were significantly downregulated. Additionally, bioinformatics analysis using Ingenuity Knowledge Base Ingenuity Pathway Analysis (IPA) revealed that SMARCA4 regulated migration response molecules. Furthermore, knockdown of SMARCA4 gene expression by siRNA treatment significantly reduced cell migration and the expression of migration-related genes. In summary, our results indicated that BET inhibitor treatment in HCC cell lines reduces cell migration through the downregulation of SMARCA4.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Proteínas/antagonistas & inibidores , Fatores de Transcrição/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , DNA Helicases/metabolismo , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Proteínas Nucleares/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 11(1): 8828, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893325

RESUMO

Microglia, resident macrophages of the brain that act as primary immune cells, play essential roles in innate immunity and neuroinflammatory pathologies. Microglial cells are rapidly activated in response to infection and inflammation/injury, associated with the expression of proinflammatory genes and secretion of cytokines. The bromodomain and extra-terminal (BET) inhibitor JQ1 has been shown to be an epigenetic agent that reduces inflammation. In this study, we investigated the mechanisms underlying the anti-inflammatory and anti-migratory functions of JQ1 and the genes targeted by JQ1 in lipopolysaccharide (LPS)-activated human microglial clone 3 (HMC3) cells using RNA-sequencing (RNA-seq). We analyzed the pattern of inflammation-related genes (chemokines, cytokines, and interferon-stimulated genes) and migration-related genes with JQ1 treatment from differentially expressed genes analysis in HMC3 cells. We found that LPS-induced IRF1 directly regulated inflammation- and migration-related genes and that JQ1 significantly reduced IRF1 and its target genes. Additionally, IRF1 attenuation significantly downregulated target genes and inhibited microglial migration. Our data suggest that the BET inhibitor JQ1 can modulate the inflammatory response and migration through the regulation of LPS-induced IRF1 in human microglia.


Assuntos
Azepinas/farmacologia , Movimento Celular/efeitos dos fármacos , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Linhagem Celular , Movimento Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 294(21): 8424-8437, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30944148

RESUMO

Mesenchymal stromal cells (MSCs) can potently regulate the functions of immune cells and are being investigated for the management of inflammatory diseases. Toll-like receptor 3 (TLR3)-stimulated human MSCs (hMSCs) exhibit increased migration and chemotaxis within and toward damaged tissues. However, the regulatory mechanisms underlying these migratory activities are unclear. Therefore, we analyzed the migration capability and gene expression profiles of TLR3-stimulated hMSCs using RNA-Seq, wound healing, and transwell cell migration assay. Along with increased cell migration, the TLR3 stimulation also increased the expression of cytokines, chemokines, and cell migration-related genes. The promoter regions of the latter showed an enrichment of putative motifs for binding the transcription factors forkhead box O1 (FOXO1), FOXO3, NF-κB (NF-κB1), and RELA proto-oncogene and NF-κB subunit. Of note, FOXO1 inhibition by the FOXO1-selective inhibitor AS1842856 significantly reduced both migration and the expression of migration-related genes. In summary, our results indicate that TLR3 stimulation induces hMSC migration through the expression of FOXO1-activated genes.


Assuntos
Movimento Celular , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Receptor 3 Toll-Like/metabolismo , Adulto , Feminino , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/genética , Humanos , Masculino , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Proto-Oncogene Mas , Quinolonas/farmacologia , Receptor 3 Toll-Like/agonistas , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
8.
Biomol Ther (Seoul) ; 26(3): 290-297, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401570

RESUMO

We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

9.
Front Immunol ; 9: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403501

RESUMO

Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ)] and invading pathogen products (e.g., toll-like receptors (TLRs) agonists) are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment ("priming") and TLR4 ligand bacterial lipopolysaccharide (LPS)-induced macrophage activation (M1 or classical activation) have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs), and transcription co-factors (TcoFs) that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL)-4 and IL-13 (M2 or alternative activation) elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.


Assuntos
Células da Medula Óssea/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Interferon gama/imunologia , Interleucina-13/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptor 4 Toll-Like/imunologia
10.
Toxicol In Vitro ; 46: 66-76, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28986285

RESUMO

During the differentiation process, various epigenetic factors regulate the precise expression of important genes and control cellular fate. During this stage, the differentiating cells become vulnerable to external stimuli. Here, we used an early neural differentiation model to observe ethanol-mediated transcriptional alterations. Our objective was to identify important molecular regulators of ethanol-related alterations in the genome during differentiation. A transcriptomic analysis was performed to profile the mRNA expression in differentiating embryoid bodies with or without ethanol treatment. In total, 147 differentially expressed genes were identified in response to 50mM ethanol. Of these differentially expressed genes, 78 genes were up-regulated and 69 genes were down-regulated. Our analysis revealed a strong association among the transcript signatures of the important modulators which were involved in protein modification, protein synthesis and gene expression. Additionally, ethanol-mediated activation of DNA transcription was observed. We also profiled ethanol-responsive transcription factors (TFs), upstream transcriptional regulators and TF-binding motifs in the differentiating embryoid bodies. In this study, we established a platform that we hope will help other researchers determine the ethanol-mediated changes that occur during cellular differentiation.


Assuntos
Corpos Embrioides/efeitos dos fármacos , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , DNA/genética , Corpos Embrioides/metabolismo , Perfilação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição
11.
Mol Cells ; 40(10): 737-751, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29047260

RESUMO

Histone-modifying enzymes are key players in the field of cellular differentiation. Here, we used GSK-J4 to profile important target genes that are responsible for neural differentiation. Embryoid bodies were treated with retinoic acid (10 µM) to induce neural differentiation in the presence or absence of GSK-J4. To profile GSKJ4-target genes, we performed RNA sequencing for both normal and demethylase-inhibited cells. A total of 47 and 58 genes were up- and down-regulated, respectively, after GSK-J4 exposure at a log2-fold-change cut-off value of 1.2 (p-value < 0.05). Functional annotations of all of the differentially expressed genes revealed that a significant number of genes were associated with the suppression of cellular proliferation, cell cycle progression and induction of cell death. We also identified an enrichment of potent motifs in selected genes that were differentially expressed. Additionally, we listed upstream transcriptional regulators of all of the differentially expressed genes. Our data indicate that GSK-J4 affects cellular biology by inhibiting cellular proliferation through cell cycle suppression and induction of cell death. These findings will expand the current understanding of the biology of histone-modifying enzymes, thereby promoting further investigations to elucidate the underlying mechanisms.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Corpos Embrioides/metabolismo , Transcriptoma/genética , Benzazepinas/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pirimidinas/administração & dosagem , Transcriptoma/efeitos dos fármacos , Tretinoína/administração & dosagem
12.
Sci Rep ; 7(1): 6554, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747667

RESUMO

Persistent microglial activation is associated with the production and secretion of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify neurodegenerative diseases. A novel synthetic histone 3 lysine 27 (H3K27) demethylase JMJD3 inhibitor, GSK-J4, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for GSK-J4 molecular targets has not been undertaken in microglia. To study the immuno-modulatory effects of GSK-J4 at the transcriptomic level, triplicate RNA sequencing and quantitative real-time PCR analyses were performed with resting, GSK-J4-, LPS- and LPS + GSK-J4-challenged primary microglial (PM) and BV-2 microglial cells. Among the annotated genes, the transcriptional sequencing of microglia that were treated with GSK-J4 revealed a selective effect on LPS-induced gene expression, in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent transcription factors TFs, as well as previously unidentified genes that are important in inflammation was suppressed. Furthermore, we showed that GSK-J4 controls are important inflammatory gene targets by modulating STAT1, IRF7, and H3K27me3 levels at their promoter sites. These unprecedented results demonstrate that the histone demethylase inhibitor GSK-J4 could have therapeutic applications for neuroinflammatory diseases.


Assuntos
Benzazepinas/metabolismo , Inibidores Enzimáticos/metabolismo , Inflamação/patologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Microglia/efeitos dos fármacos , Pirimidinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
13.
Biochem Pharmacol ; 137: 61-80, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431938

RESUMO

Multiple studies have documented that Enhancer of zeste homolog 2 (EZH2) could play a role in inflammation and a wide range of malignancies; however, the underlying mechanisms remain largely unaddressed. Microglial activation is a key process in the production and release of numerous pro-inflammatory mediators that play important roles in inflammation and neurodegeneration in the central nervous system (CNS). Therefore, our aim was to investigate whether inhibition of EZH2 with the selective small molecule inhibitor EPZ-6438 protects against neonatal microglial activation. First, in mouse primary microglial cells and a microglial cell line, we found that LPS can rapidly increase EZH2 mRNA level and we subsequently performed gene expression profiling and constructed networks in resting, EPZ-6438-treated, LPS-treated and LPS+EPZ-6438-treated primary microglial cells and a microglial cell line using transcriptome RNA sequencing and bioinformatics analyses. By examining the RNA sequencing, we identified EPZ-6438 target genes and co-regulated modules that were critical for inflammation. We also identified unexpected relationships between the inducible transcription factors (TFs), motif strength, and the transcription of key inflammatory mediators. Furthermore, we showed that EPZ-6438 controls important inflammatory gene targets by modulating interferon regulatory factor (IRF) 1, IRF8, and signal transducer and activator of transcription (STAT) 1 levels at their promoter sites. Our unprecedented findings demonstrate that pharmacological interventions built upon EZH2 inhibition by EPZ-6438 could be a useful therapeutic approach for the treatment of neuroinflammatory diseases associated with microglial activation.


Assuntos
Benzamidas/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Microglia/efeitos dos fármacos , Piridonas/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microglia/metabolismo , Morfolinas
14.
Mol Immunol ; 87: 47-59, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407558

RESUMO

The integrin CD11b, which is encoded by the integrin subunit alpha M (ITGAM), is primarily expressed on the surface of innate immune cells. Genetic variations in ITGAM are among the strongest risk factors for systemic lupus erythematosus, an autoimmune disease characterized by the presence of autoantibodies. However, the regulatory function of CD11b in the antibody responses remains unclear. Here, we report the induction of CD11b in activated B2 B cells and define its unexpected role in immunoglobulin heavy chain class switch recombination (CSR). LPS-activated B cells lacking CD11b yielded fewer IgG subtypes such as IgG1 and IgG2a in vitro, and immunization-dependent CSR and affinity maturation of antibodies were severely impaired in CD11b-deficient mice. Notably, we observed the reduced expression of activation-induced cytidine deaminase (AID), an enzyme that initiates CSR and somatic hypermutation, and ectopic expression of AID was sufficient to rescue the defective CSR of CD11b-deficient B cells. LPS-induced phosphorylation of NF-κB p65 and IκBα was attenuated in CD11b-deficient B cells, and hyperactivation of IκB kinase 2 restored the defective AID expression and CSR, which implied that CD11b regulates the NF-κB-dependent induction of AID. Overall, our experimental evidence emphasized the function of CD11b in antibody responses and the role of CD11b as a vital regulator of CSR.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos/imunologia , Antígeno CD11b/imunologia , Citidina Desaminase/imunologia , Switching de Imunoglobulina/imunologia , Animais , Linfócitos B , Regulação da Expressão Gênica/imunologia , Quinase I-kappa B/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Recombinação Genética/imunologia , Hipermutação Somática de Imunoglobulina/imunologia
15.
Neuropharmacology ; 119: 1-14, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373076

RESUMO

Although microglial cells have an essential role in the host defense of the brain, the abnormal activation of microglia can lead to devastating outcomes, such as neuroinflammation and neurodegeneration. Emerging evidence indicates that FTY720 (fingolimod), an FDA-approved drug, has beneficial effects on brain cells in the central nervous system (CNS) and, more recently, immunosuppressive activities in microglia via modulation of the sphingosine 1 phosphate (S1P) 1 receptor. However, the exact molecular aspects of FTY720 contribution in microglia remain largely unaddressed. To understand the molecular mechanisms underlying the roles of FTY720 in microglia, we performed gene expression profiling in resting, FTY720, LPS and LPS + FTY720 challenged primary microglial (PM) cells isolated from 3-day-old ICR mice, and we identified FTY720 target genes and co-regulated modules that were critical in inflammation. By examining RNA sequencing and binding motif datasets from FTY720 suppressed LPS-induced inflammatory mediators, we also identified unexpected relationships between the inducible transcription factors (TFs), motif strength, and the transcription of key inflammatory mediators. Furthermore, we showed that FTY720 controls important inflammatory genes targets by modulating STAT1 and IRF8 levels at their promoter site. Our unprecedented findings demonstrate that FTY720 could be a useful therapeutic application for neuroinflammatory diseases associated with microglia activation, as well as provide a rich resource and framework for future analyses of FTY720 effects on microglia interaction.


Assuntos
Cloridrato de Fingolimode/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Microglia/efeitos dos fármacos , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
16.
Oncotarget ; 8(5): 8095-8104, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28042953

RESUMO

Cervical small cell neuroendocrine tumors (CSCNETs) are rare, aggressive neuroendocrine tumors (NETs). Reliable diagnostic and prognostic CSCNET markers are lacking, making diagnosis and prognosis prediction difficult, and treatment strategies limited. Here we provide mutation profiles for five tumor-normal paired CSCNETs using whole exome sequencing (WES). We expanded our assessment of frequently mutated genes to include publicly available data from 55 small intestine neuroendocrine tumors, 10 pancreatic neuroendocrine tumors, 42 small cell lung cancers, six NET cell lines, and 188 cervical cancers, along with our five CSCNETs. We identified 1,968 somatic mutations, including 1,710 missense, 106 nonsense, 144 splice site, 4 lncRNA, 3 nonstop, and 1 start codon mutation. We assigned functions to the 114 most frequently mutated genes based on gene ontology. ATRX, ERBB4, and genes in the Akt/mTOR pathway were most frequently mutated. Positive cytoplasmic ERBB4 immunohistochemical staining was detected in all CSCNET tumors tested, but not in adjacent normal tissues. To our knowledge, this study is the first to utilize WES in matched CSCNET and normal tissues to identify somatic mutations. Further studies will improve our understanding of how ATRX and ERBB4 mutations and AKT/mTOR signaling promote CSCNET tumorigenesis, and may be leveraged in novel anti-cancer treatment strategies.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Pequenas/genética , Análise Mutacional de DNA/métodos , Sequenciamento do Exoma , Perfilação da Expressão Gênica/métodos , Mutação , Tumores Neuroendócrinos/genética , Transcriptoma , Neoplasias do Colo do Útero/genética , Adulto , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Feminino , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Tumores Neuroendócrinos/patologia , Fenótipo , Valor Preditivo dos Testes , Receptor ErbB-4/genética , Transdução de Sinais/genética , Neoplasias do Colo do Útero/patologia , Proteína Nuclear Ligada ao X/genética
17.
Sci Rep ; 6: 30311, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444640

RESUMO

Due to their multipotentiality and immunomodulation, human mesenchymal stem cells (hMSCs) are widely studied for the treatment of degenerative and inflammatory diseases. Transplantation of hMSCs to damaged tissue is a promising approach for tissue regeneration. However, the physiological mechanisms and regulatory processes of MSC trafficking to injured tissue are largely unexplored. Here, we evaluated the gene expression profile and migratory potential of hMSCs upon stimulation with the TLR4 ligand lipopolysaccharide (LPS). Using RNA sequencing, we identified unique induction patterns of interferon stimulated genes, cytokines and chemokines involved in chemotaxis and homing. The -950 to +50 bp regions of many of these LPS-responsive genes were enriched with putative binding motifs for the transcription factors (TFs) interferon regulatory factor (IRF1) and nuclear factor kappa B (NF-κB1, REL), which were also induced by LPS along with other TFs. Chromatin immunoprecipitation assays showed that IRF1 bound within their target genes promoter region. In addition, IRF1 attenuation significantly down-regulated interferon stimulated genes as well as key cytokines. Furthermore, using pharmacological inhibitors, we showed that the NF-κB and phosphatidylinositol 3-kinase (PI3K) pathways regulate the migratory and cytokines/chemokines response to LPS. These unprecedented data suggest that IRF1 and NF-κB orchestrate the TLR4-primed immunomodulatory response of hMSCs and that this response also involves the PI3K pathway.


Assuntos
Fator Regulador 1 de Interferon/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligantes , Lipopolissacarídeos/química , Células-Tronco Mesenquimais/citologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/genética , Transcriptoma/genética
18.
J Neuroinflammation ; 13(1): 182, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400875

RESUMO

BACKGROUND: Microglia are resident myeloid cells in the CNS that are activated by infection, neuronal injury, and inflammation. Established BV2 microglial cell lines have been the primary in vitro models used to study neuroinflammation for more than a decade because they reduce the requirement of continuously maintaining cell preparations and animal experimentation models. However, doubt has recently been raised regarding the value of BV2 cell lines as a model system. METHODS: We used triplicate RNA sequencing (RNA-seq) to investigate the molecular signature of primary and BV2 microglial cell lines using two transcriptomic techniques: global transcriptomic biological triplicate RNA-seq and quantitative real-time PCR. We analyzed differentially expressed genes (DEGs) to identify transcription factor (TF) motifs (-950 to +50 bp of the 5' upstream promoters) and epigenetic mechanisms. RESULTS: Sequencing assessment and quality evaluation revealed that primary microglia have a distinct transcriptomic signature and express a unique cluster of transcripts in response to lipopolysaccharide. This microglial signature was not observed in BV2 microglial cell lines. Importantly, we observed that previously unidentified TFs (i.e., IRF2, IRF5, IRF8, STAT1, STAT2, and STAT5A) and the epigenetic regulators KDM1A, NSD3, and SETDB2 were significantly and selectively expressed in primary microglia (PM). Although transcriptomic alterations known to occur in BV2 microglial cell lines were identified in PM, we also observed several novel transcriptomic alterations in PM that are not frequently observed in BV2 microglial cell lines. CONCLUSIONS: Collectively, these unprecedented findings demonstrate that established BV2 microglial cell lines are probably a poor representation of PM, and we establish a resource for future studies of neuroinflammation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Camundongos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transcriptoma/fisiologia
19.
PLoS One ; 11(3): e0149976, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930486

RESUMO

Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.


Assuntos
Corpos Embrioides/metabolismo , Etanol/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Depressores do Sistema Nervoso Central/farmacologia , Células-Tronco de Carcinoma Embrionário/metabolismo , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Gene ; 576(1 Pt 1): 119-25, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26456191

RESUMO

Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research.


Assuntos
Carcinoma/metabolismo , Corpos Embrioides/metabolismo , Etanol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Carcinoma/patologia , Linhagem Celular Tumoral , Corpos Embrioides/patologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...